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Abstract. The use of the BFKL kernel improved by the inclusion of subleading terms generated by renormal-
ization group (RG) analysis has been suggested to cure the instabilities in the behavior of the BFKL Green’s
function in the next-to-leading approximation (NLA). We test the performance of a RG-improved kernel in
the determination of the amplitude of a physical process, the electroproduction of two light vector mesons,
in the BFKL approach in the NLA.We find that a smooth behavior of the amplitude with the center-of-mass
energy can be achieved, setting the renormalization and energy scales appearing in the subleading terms to
values much closer to the kinematical scales of the process than in the approaches based on the unimproved
kernel.

1 Introduction

It is known that hard processes in which the center-of-mass
energy is much larger than all the other scales are the natu-
ral ground for the application of the BFKL approach [1–4].
This approach was originally developed in the leading log-
arithmic approximation (LLA), which means resummation
of all terms of the form (αs ln(s))

n. In such an approx-
imation the argument µR of the running coupling and
the energy scale are not fixed. This motivated the exten-
sion of the approach to the next-to-leading logarithmic
approximation (NLLA), which means resummation of all
terms proportional to αs(αs ln(s))

n. In both approxima-
tions the BFKL amplitude appears as a convolution of
the Green’s function of two interacting reggeized gluons
with the impact factors of the colliding particles (see, for
example, Fig. 1). The Green’s function, which carries the
dependence on the center-of-mass energy, can be deter-
mined through the BFKL equation. The impact factors are
process-dependent and describe the interaction between
reggeized gluons and scattering particles.
The singlet kernel of the BFKL equation in the next-

to-leading approximation (NLA) was obtained for the for-
ward case in [5, 6], completing the long program of calcula-
tion of the NLA corrections [7–20] (for a review, see [21]).
In the non-forward case the ingredients for the NLA BFKL
kernel have been known for a few years in the case of the
color octet representation in the t-channel [22–26]. This
color representation is very important to check the consis-
tency of the s-channel unitarity with the gluon reggeiza-
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tion, i.e. for the “bootstrap” [27–36]. More recently, the
last missing piece for the determination of the non-forward
NLA BFKL kernel has been calculated in the singlet color
representation, i.e. in the pomeron channel, relevant for
physical applications [37–39]. The singlet NLA BFKL ker-
nel in the so-called “dipole form” is available now also in
the coordinate representation [40–42], which allows for the
study of its conformal properties and the comparison with
the kernel of the Balitsky–Kovchegov [43, 44] equation in
the linear regime. So far, the color dipole kernel has been
calculated in the NLA only for the quark part [45] and
agrees with the dipole form of the quark part of the NLA
BFKL kernel.
In this paper we will focus on the BFKL approach in

the NLA and in the case of forward scattering. It is well
known that the NLA corrections to the Green’s function
turn out to be large, this being a signal of the poor conver-
gence of the BFKL series. In order to “cure” the resulting
instability, more convergent kernels have been introduced,
including terms generated by renormalization group (RG),
or collinear, analysis [46]. They are based on the ω-shift
method [46], with ω being the variable Mellin-conjugated
to the squared center-of-mass energy s. The main effect
of this method is that the scale-invariant part of the ker-
nel eigenvalues carries a dependence on the Mellin vari-
able ω, in such a way that the position of the singularities
of the Green’s function in the ω-plane becomes the so-
lution of an implicit equation in ω. Many other studies
have been performed, either based on this kind of improved
kernels [47–55] or analyzing different aspects of the ker-
nel NLA and alternative approaches [56–73]. The effects
of these collinear corrections in exclusive observables have
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Fig. 1. Schematic representation of the amplitude for
γ∗(p) γ∗(p′)→ V (p1)V (p2) forward scattering

been investigated in [74–76], with a posteriori confirmation
in [77].
In [78] the original approach of [46] was revisited and an

approximation to the original ω-shift was performed, lead-
ing to an explicit expression for the RG-improvedNLA ker-
nel. It was shown that this improved kernel leads to a NLA
BFKL Green’s function exempt of instabilities. Since the
effect of the RG-improvement is to modify the BFKL ker-
nel by the inclusion of terms beyond the NLA, one is led
to conclude that RG-generated terms, although formally
subleading, play an important numerical role in practical
applications.
It is very interesting to test the RG-improvement of

the kernel in the calculation of a full physical amplitude,
rather than just considering its effect on the BFKLGreen’s
function, and to compare it with other approaches. A test-
field for this comparison can be provided by the physical
process γ∗γ∗→ V V , where γ∗ represents a virtual photon
and V a light neutral vector meson (ρ0, ω, φ). The ampli-
tude of this reaction has been calculated in [79] through the
convolution of the (unimproved) BFKL Green’s function
with the γ∗→ V impact factors, calculated in [80, 81].1 In
the case of equal photon virtualities, the so-called “pure”
BFKL regime, a numerical calculation has shown that
NLA corrections are large and of opposite sign with re-
spect to the leading order and are dominated, at the lower
energies, by the NLA corrections from the impact factors.
Nonetheless, an amplitude for this process with a smooth
behavior in s could be achieved by “optimizing” the choice
of the energy scale s0 and of the renormalization scale µR,
which appear in the subleading terms. Later on it has been
found that the result is rather stable under change of the
method of optimization of the perturbative series and of
the representation adopted for the amplitude [82].
The striking feature of these investigations was that in

all cases the optimal values of the two energy parameters
turned out to be quite far from the kinematical scales of
the reaction. For example, the optimal value of the renor-
malization scale µR turned out to be typically as large as

1 This amplitude has been considered also in [86–88].

∼ 10Q, Q2 being the virtuality of the colliding photons.
The proposed explanation for these “unnatural” values
was that they mimic the unknown next-to-NLA correc-
tions, which should be large and of opposite sign with
respect to the NLA in order to preserve the renormaliza-
tion and energy scale invariance of the exact amplitude. If
this explanation is correct and if the RG-improvement of
the kernel catches the essential dynamics from subleading
orders, then, by repeating the numerical determination of
the γ∗γ∗→ V V amplitude with the use of an RG-improved
kernel, one should get more “natural” values for the op-
timal choices of the energy scales and, of course, results
consistent with the previous determinations. In this work
we address this question by calculating the NLA amplitude
of the γ∗γ∗→ V V process in the BFKL approach with
the RG-improved kernel of [78], which can be straightfor-
wardly implemented in the numerical set up of [79, 82].
The paper is organized as follows: in the next section we

repeat the steps of [79, 82] to build up the NLA amplitude
in two representations, series and “exponentiated”, which
implement the RG-improved kernel of [78]; in Sect. 3 we
numerically evaluate the amplitude, considering both the
cases of colliding photons with the same virtualities and
with strongly ordered virtualities. We stress that in [79, 82]
only the case of equal photons’ virtualities was considered;
attempts to determine the amplitude for strongly ordered
virtualities were unsuccessful, due to the large instabili-
ties met in the numerical analysis [83]. We expect that the
RG-improvement should be even more effective in the lat-
ter case, since it was conceived to work in a kinematics with
strong asymmetry in the transverse momentum plane [46].

2 The NLA amplitude with the RG-improved
Green’s function1

We consider the production of two light vector mesons
(V = ρ0, ω, φ) in the collision of two virtual photons,

γ∗(p)γ∗(p′)→ V (p1)V (p2) . (1)

Here, p1 and p2 are taken as Sudakov vectors satisfying
p21 = p

2
2 = 0 and 2(p1p2) = s; the virtual photon momenta

are instead

p= αp1−
Q21
αs
p2 , p

′ = α′p2−
Q22
α′s
p1 , (2)

so that the photon virtualities become p2 = −Q21 and
(p′)2 =−Q22. We consider the kinematics when

s�Q21,2� Λ
2
QCD , (3)

2 This section follows closely both Sect. 2 of [79] and Sect. 2
of [82], the only difference being the use of a modified BFKL
kernel. The reader already familiar with the notation and the
previous papers may prefer to go straight to the main formu-
las: (36) for the “exponentiated” representation, (37) for the
“series” representation of the amplitude and (22) for the extra
term in the BFKL kernel eigenvalue.
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and

α= 1+
Q22
s
+O(s−2) , α′ = 1+

Q21
s
+O(s−2) . (4)

In this case the vector mesons are produced by longitu-
dinally polarized photons in the longitudinally polarized
state [80, 81]. Other helicity amplitudes are power sup-
pressed, with a suppression factor ∼mV /Q1,2. We will dis-
cuss here the amplitude of the forward scattering, i.e. when
the transversemomenta of the produced V mesons are zero
or when the variable t= (p1−p)2 takes its maximal value,
t0 =−Q21Q

2
2/s+O(s

−2).
The forward amplitude in the BFKL approach may be

presented as follows

Ims (A) =
s

(2π)2

∫
d2q1
q21
Φ1(q1, s0)

∫
d2q2
q22
Φ2(−q2, s0)

×

δ+i∞∫

δ−i∞

dω

2πi

(
s

s0

)ω
Gω(q1,q2) . (5)

This representation for the amplitude is valid with NLA
accuracy.
In (5), Φ1(q1, s0) and Φ2(−q2, s0) are the impact fac-

tors describing the transitions γ∗(p)→ V (p1) and γ∗(p′)→
V (p2), respectively. The Green’s function in (5) is deter-
mined by the BFKL equation

δ2(q1−q2) = ωGω(q1,q2)−

∫
d2qK(q1,q)Gω(q,q2) ,

(6)

where K(q1,q2) is the BFKL kernel. It is convenient to
work in the transverse momentum representation, where
“transverse” refers to the plane orthogonal to the vector
mesons momenta. In this representation, defined by

q̂|qi〉= qi|qi〉 , (7)

〈q1|q2〉= δ
(2)(q1−q2) ,

〈A|B〉= 〈A|k〉〈k|B〉 =

∫
d2kA(k)B(k) , (8)

the kernel of the operator K̂ is

K(q2,q1) = 〈q2|K̂|q1〉 , (9)

and the equation for the Green’s function reads

1̂ = (ω− K̂)Ĝω , (10)

its solution being

Ĝω = (ω− K̂)
−1 . (11)

To clearly indicate the RG-improved pieces of the kernel,
we decompose K̂ as

K̂ = ᾱsK̂
0+ ᾱ2sK̂

1+ K̂RG , (12)

where

ᾱs =
αsNc

π
(13)

and Nc is the number of colors. In (12) K̂
0 is the BFKL

kernel in the LLA, K̂1 is the NLA correction and K̂RG
includes the RG-generated terms, which are O(ᾱ3s ). The
impact factors are also presented as an expansion in αs

Φ1,2(q) = αsD1,2

[
C
(0)
1,2 (q

2)+ ᾱsC
(1)
1,2 (q

2)
]
,

D1,2 =−
4πeqfV
NcQ1,2

√
N2c −1 , (14)

where fV is the meson dimensional coupling constant (fρ ≈
200MeV) and eq should be replaced by e/

√
2, e/(3

√
2)

and −e/3 for the case of ρ0, ω and φ meson production,
respectively.
In the collinear factorization approach the meson tran-

sition impact factor is given as a convolution of the hard
scattering amplitude for the production of a collinear
quark–antiquark pair with the meson distribution ampli-
tude (DA). The integration variable in this convolution
is the fraction z of the meson momentum carried by the
quark (z̄ ≡ 1− z is the momentum fraction carried by the
antiquark):

C
(0)
1,2(q

2) =

1∫

0

dz
q2

q2+ zz̄Q21,2
φ‖(z) . (15)

The NLA correction to the hard scattering amplitude, for
a photon with virtuality equal to Q2, is defined as follows:

C(1)(q2) =
1

4Nc

1∫

0

dz
q2

q2+ zz̄Q2
[τ(z)+ τ(1− z)]φ‖(z) ,

(16)

with τ(z) given in (75) of [80]. C
(1)
1,2(q

2) are given by the
previous expression with Q2 replaced everywhere in the in-
tegrand by Q21 and Q

2
2, respectively. We will use the DA in

the asymptotic form φas‖ (z) = 6z(1− z).
To determine the amplitude with NLA accuracy we

need an approximate solution of (11). With the required
accuracy this solution is

Ĝω = (ω− ᾱsK̂
0)−1+(ω− ᾱsK̂

0)−1
(
ᾱ2s K̂

1+ K̂RG
)

× (ω− ᾱsK̂
0)−1+O

[(
ᾱ2s K̂

1
)2]
. (17)

Different from [79, 82], where K̂RG was absent, this Green’s
function includes effects that are beyond the NLA. The ba-
sis of eigenfunctions of the LLA kernel,

K̂0|ν〉= χ(ν)|ν〉 ,

χ(ν) = 2ψ(1)−ψ

(
1

2
+ iν

)
−ψ

(
1

2
− iν

)
, (18)
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is given by the following set of functions:

〈q|ν〉 =
1

π
√
2

(
q2
)iν− 12 , (19)

for which the orthonormality condition takes the form

〈ν′|ν〉 =

∫
d2q

2π2
(
q2
)iν−iν′−1

= δ(ν−ν′) . (20)

The action of the modified BFKL kernel on these functions
may be expressed as follows:

K̂|ν〉= ᾱs(µR)χ(ν)|ν〉+ ᾱ
2
s (µR)

×

(
χ(1)(ν)+

β0

4Nc
χ(ν) ln(µ2R)

)
|ν〉

+ ᾱ2s (µR)
β0

4Nc
χ(ν)

(
i
∂

∂ν

)
|ν〉+χRG(ν)|ν〉 ,

(21)

where the first term represents the action of LLA kernel,
the second and the third ones stand for the diagonal and
the non-diagonal parts of the NLA BFKL kernel [79] and

χRG(ν) = 2

×Re

{
∞∑
m=0

[(
∞∑
n=0

(−1)n(2n)!

2nn!(n+1)!

(
ᾱs+aᾱ

2
s

)n+1
(1/2+ iν+m− bᾱs)

2n+1

)

−
ᾱs

1/2+ iν+m
− ᾱ2s

(
a

1/2+ iν+m
+

b

(1/2+ iν+m)2

−
1

2(1/2+ iν+m)3

)]}
(22)

is the solution of the ω-shift equation obtained in [78], with

a=
5

12

β0

Nc
−
13

36

nf

N3c
−
55

36
, b=−

1

8

β0

Nc
−
nf

6N3c
−
11

12
.

(23)

The function χ(1)(ν) is conveniently represented in the
form

χ(1)(ν) =−
β0

8Nc

(
χ2(ν)−

10

3
χ(ν)− iχ′(ν)

)
+ χ̄(ν) ,

(24)

where

χ̄(ν) =−
1

4

[
π2−4

3
χ(ν)−6ζ(3)−χ′′(ν)−

π3

cosh(πν)

+
π2 sinh(πν)

2ν cosh2(πν)

(
3+

(
1+
nf

N3c

)
11+12ν2

16(1+ν2)

)

+4φ(ν)

]
, (25)

φ(ν) = 2

1∫

0

dx
cos(ν ln(x))

(1+x)
√
x

[
π2

6
−Li2(x)

]
,

Li2(x) =−

x∫

0

dt
ln(1− t)

t
. (26)

Here and below χ′(ν) = d(χ(ν))/dν and χ′′(ν) =
d2(χ(ν))/dν2.
The |ν〉 representations for the impact factors are given

by the following expressions:

C
(0)
1 (q

2)

q2
=

+∞∫

−∞

dν′c1(ν
′)〈ν′|q〉 ,

C
(0)
2 (q

2)

q2
=

+∞∫

−∞

dνc2(ν)〈q|ν〉 , (27)

c1(ν) =

∫
d2qC

(0)
1 (q

2)

(
q2
)iν− 32
π
√
2
,

c2(ν) =

∫
d2qC

(0)
2 (q

2)

(
q2
)−iν−32
π
√
2

, (28)

and by similar equations for c
(1)
1 (ν) and c

(1)
2 (ν) from

the NLA corrections to the impact factors, C
(1)
1 (q

2) and

C
(1)
2 (q

2).
Following [79], we obtain the amplitude as a spectral

decomposition on the basis of eigenfunctions of the LLA
BFKL kernel:

Ims (A)

D1D2
=

s

(2π)2

+∞∫

−∞

dν

(
s

s0

)ᾱs(µR)χ(ν)

×α2s (µR)c1(ν)c2(ν)

{
1+ ᾱs(µR)

(
c
(1)
1 (ν)

c1(ν)
+
c
(1)
2 (ν)

c2(ν)

)

+ ᾱ2s (µR) ln

(
s

s0

)[
χ̄(ν)+

β0

8Nc
χ(ν)

×

⎛
⎝−χ(ν)+ 10

3
+ i
d ln
(
c1(ν)
c2(ν)

)

dν
+2 ln(µ2R)

⎞
⎠
⎤
⎦

+ln

(
s

s0

)
χRG(ν)

}
. (29)

We find that

c1,2(ν) =

(
Q21,2
)±iν−12
√
2

Γ 2[32 ± iν]

Γ [3±2iν]

6π

cosh(πν)
, (30)

c1(ν)c2(ν) =
1

Q1Q2

(
Q21
Q22

)iν
9π3(1+4ν2) sinh(πν)

32ν(1+ν2) cosh3(πν)
,

(31)

i
d ln( c1(ν)

c2(ν)
)

dν
= 2

[
ψ(3+2iν)+ψ(3−2iν)

−ψ

(
3

2
+ iν

)
−ψ

(
3

2
− iν

)
− ln (Q1Q2)

]
.

(32)

It can be useful to separate from the NLA correction to
the impact factor the terms containing the dependence on
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s0 and β0,

C(1)(q2) =

1∫

0

dz
q2

q2+ zz̄Q2
φ‖(z)

[
1

4
ln

(
s0

Q2

)

× ln

(
(α+ zz̄)4

α2z2z̄2

)
+
β0

4Nc

(
ln

(
µ2R
Q2

)
+
5

3
− ln(α)

)
+ · · ·

]
.

(33)

Accordingly, one can write

c
(1)
1,2(ν) = c̃

(1)
1,2(ν)+ c̄

(1)
1,2(ν) , (34)

where c̃
(1)
1,2(ν) are the contributions from the terms isolated

in the previous equation and c̄
(1)
1,2(ν) represent the rest.

In [79] it was found that

c̃
(1)
1 (ν)

c1(ν)
+
c̃
(1)
2 (ν)

c2(ν)
= ln

(
s0

Q1Q2

)
χ(ν)+

β0

2Nc

[
ln

(
µ2R
Q1Q2

)

+
5

3
+ψ(3+2iν)+ψ(3−2iν)

−ψ

(
3

2
+ iν

)
−ψ

(
3

2
− iν

)]
. (35)

One can construct infinitely many representations of
the amplitude, all of them equivalent within NLA ac-
curacy. A particular one, motivated in [82], is to expo-
nentiate all the scale-invariant part of the NLA kernel,
obtaining

Ims(A)

D1D2

=
s

(2π)2

+∞∫

−∞

dν

×

(
s

s0

)ᾱs(µR)χ(ν)+ᾱ2s (µR)(χ̄(ν)+ β0
8Nc

χ(ν)[−χ(ν)+ 103 ]
)
+χRG(ν)

×α2s (µR)c1(ν)c2(ν)

×

[
1+ ᾱs(µR)

(
c
(1)
1 (ν)

c1(ν)
+
c
(1)
2 (ν)

c2(ν)

)

+ ᾱ2s (µR) ln

(
s

s0

)
β0

8Nc
χ(ν)

×

⎛
⎝i d ln(

c1(ν)
c2(ν)
)

dν
+2 ln(µ2R)

⎞
⎠
⎤
⎦ .
(36)

Another possible representation of the amplitude, in some
sense closer to the original idea of the BFKL approach, is

the “series” representation, which reads

Q1Q2

D1D2

ImsA

s
=

1

(2π)2
αs(µR)

2

×

{
b0+a0 ln

(
s

s0

)
+
∞∑
n=1

ᾱs(µR)
n

[
an ln

(
s

s0

)n+1

+ bn

(
ln

(
s

s0

)n
+dn(s0, µR) ln

(
s

s0

)n−1)]}
, (37)

where the coefficients

bn

Q1Q2
=

+∞∫

−∞

dνc1(ν)c2(ν)
χn(ν)

n!
, (38)

are determined by the kernel and the impact factors in
LLA and

an

Q1Q2
=

+∞∫

−∞

dνc1(ν)c2(ν)χRG(ν)
χn(ν)

n!
(39)

arise from the collinear improvement. The coefficients

dn = n ln

(
s0

Q1Q2

)
+
β0

4Nc

(
(n+1)

bn−1

bn
ln

(
µ2R
Q1Q2

)

−
n(n−1)

2
+
Q1Q2

bn

+∞∫

−∞

dν(n+1)f(ν)c1(ν)c2(ν)

χn−1(ν)

(n−1)!

)
+
Q1Q2

bn

⎛
⎝
+∞∫

−∞

dνc1(ν)c2(ν)
χn−1(ν)

(n−1)!

×

[
c̄
(1)
1 (ν)

c1(ν)
+
c̄
(1)
2 (ν)

c2(ν)
+ (n−1)

χ̄(ν)

χ(ν)

])
(40)

are determined by the NLA corrections to the kernel and
to the impact factors. Here, c̄

(1)
1,2(ν) represent the con-

tribution without the terms depending on s0 and β0,
and

f(ν) =
5

3
+ψ(3+2iν)+ψ(3−2iν)−ψ

(
3

2
+ iν

)

−ψ

(
3

2
− iν

)
. (41)

We stress that the terms in the series representation (37)
with the an coefficients are beyond the NLA, since, as one
can easily see from (22), χRG is O(ᾱ3s ).

3 Numerical results

In this section we present some numerical results for the de-
pendence on s of the BFKL amplitude calculated for the
process under study, using both the “exponentiated” and
the “series” representations derived in the previous sec-
tion. Following [79], we will adopt the principle of minimal



530 F. Caporale et al.: Collinear improvement of theBFKL kernel in the electroproduction of two light vectormesons

sensitivity (PMS) [84, 85] requiring, for each value of s, the
minimal sensitivity of the predictions to the change of both
the renormalization and the energy scale, µR and s0. In
previous studies, where the unimproved kernel was used,
the optimal choices for µR and s0 turned out to be very far
from the kinematical scales of the process. Our aim is to see
if and to what extent the inclusion of a collinear improve-
ment leads to more “natural” values for the optimal scales.
This would demonstrate that the RG-generated terms re-
produce the essential subleading dynamics, thus stabilizing
the perturbative series. In the following analysis we use
the two-loop running coupling corresponding to the value
αs(MZ) = 0.12.

3.1 Symmetric kinematics

We consider here the Q1 = Q2 ≡ Q kinematics, i.e. the
“pure” BFKL regime, with Q2 = 24GeV2 and nf = 5.
We start with the “exponentiated” representation, given
in (36) and set ln(s/s0) = Y −Y0, where Y = ln(s/Q2) and
Y0 = ln(s0/Q

2). We have looked for the optimal value for
the scales µR and Y0. In practice, for each fixed value of Y
we have determined the optimal choice of these parameters
for which the amplitude is the least sensitive to their vari-
ation. We have found that the amplitude is always quite
stable under variation of both scales and exhibits generally
only one stationary point (local maximum). We choose as
optimal values of the parameters those corresponding to
this stationary point.
The optimal values turned out to be typically µR 	 3Q

and Y0 	 2. In comparison with [79], where the optimal
choice was typically µR 	 10Q, we can see that there is a re-
markable move towards “naturalness”. The fact that the
inclusion of the RG-terms affects the optimal choice of µR
more strongly than of Y0 is not surprising, since the added
terms depend on µR and not on Y0. In Fig. 2 we show the
result for the (imaginary part of the) “improved” ampli-
tude compared with the result obtained in [82]. The curves
are in good agreement at the lower energies, the devia-

Fig. 2. Ims(A)Q
2/(sD1D2) as a function of Y at Q

2 =
24GeV2 and nf = 5 in the “exponentiated” representation with
and without collinear improvement of the kernel; in both cases
the PMS optimization method has been used

Fig. 3. Ims(A)Q
2/(sD1D2) as a function of Y at Q

2 =
24GeV2 and nf = 5 in the “series” representation with and
without collinear improvement of the kernel; in both cases the
PMS optimization method has been used

tion increasing for large values of Y . This is consistent with
having a larger asymptotic intercept when the collinear im-
provements are taken into account. We have to remember,
however, that the applicability domain of the BFKL ap-
proach is determined by the condition ᾱs(µR)Y ∼ 1, which
for our typical optimal value of µR and for Q

2 = 24GeV2

means Y ∼ 6. Around this value the discrepancy is not so
pronounced.
The next analysis has been done using the “series” rep-

resentation of the amplitude, given in (37). In this case we
have also observed a smooth dependence of the amplitude
on the two energy parameters. The optimal values for Y0
and µR turned out to be quite similar to those obtained for
the “exponentiated” representation, µR 	 3Q and Y0 	 3.
In Fig. 3 we show the behavior in Y of the “series” ampli-
tude, compared with the determination of [79]. The situ-
ation is similar to Fig. 2, but the deviation between the
curves appears to be more marked here. It is important to
observe that the curves for the “exponentiated” and “se-
ries” representations of the amplitude as functions of Y
with collinear improvement (see Figs. 2 and 3) fall almost
on top of each other, while in the determinationwithout the
collinear improvement there was a discrepancy, more pro-
nounced at higher energies [82]. This is a further indication
of a better stability, induced by the collinear improvement.
In order to make visible the effect of the collinear im-

provement in the “series” representation we list the first
few coefficients (see (37)) bn, dn, coming from the unim-
proved BFKL kernel and impact factors (in LLA e NLA re-
spectively), and an, coming from the RG-resummed terms.
Using the optimal scales chosen with the PMS method we
obtain (Q2 = 24GeV2, nf = 5, Y0 = 3, µR = 3Q)

b0 = 17.0664 , b1 = 34.5920 , b2 = 40.7609 ,

b3 = 33.0618 , b4 = 20.7467 ,

d1 = 0.674275 , d2 =−1.73171 ,

d3 =−7.46518 , d4 =−15.927 ,

a1 = 5.52728 , a2 = 7.30295 ,

a3 = 6.42149 , a4 = 4.24011 . (42)
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We can see that the an coefficients are of the opposite
sigh with respect to the dn, so “curing” the bad behavior
of the BFKL series. Even if the values of the an coefficients
decrease with n, they appear in (37) with two more pow-
ers of the energy logarithm than the dn coefficients, so that
their effect is not limited to low energies.

3.2 Asymmetric kinematics

When the virtualities of the photons are strongly ordered,
we enter the “DGLAP” regime, where collinear effects
should come heavily into the game. In this regime, pre-
vious attempts to numerically determine the amplitude
using unimproved kernels were unsuccessful due to severe
instabilities [83]. We have found here that these instabili-
ties disappear if, instead, the RG-improved kernel is used.
In the numerical analysis to follow, we consider two

choices for the virtualities of the photons, Q1 = 2GeV,
Q2 = 12GeV and Q1 = 0.5 GeV, Q2 = 48GeV, so that
Q1Q2 =Q

2 = 24GeV2 in both cases, and used the “expo-
nentiated” representation. We define Y = ln(s/Q1Q2) and
Y0 = ln(s0/Q1Q2).
For the first choice of virtualities, we find that for each

Y value the amplitude is still quite stable under variation
of the energy parameters and the optimal values are µR 	
4
√
Q1Q2 and Y0 	 2, almost independently of Y . The same

holds for the second choice of virtualities, with the only dif-
ference that now the optimal values depend strongly on Y .
As an example, for Y = 6, when ᾱs(µR)Y ∼ 1, the optimal
µR is 	 3

√
Q1Q2, but Y0=7. This large value for Y0 should

not be surprising: if we use Q22 as normalization scale in
Y0 instead of Q1Q2, the optimal value gets lowered down
∼ 2.5, which looks more “natural”.
In Fig. 4 we plot the amplitude for the two choices of

photons’ virtualities we have considered, together with
the amplitude for Q1 = Q2 =

√
24GeV. The amplitude

becomes smaller and smaller when Q2/Q1 increases, as
it must be expected due to the presence of the factor

Fig. 4. Ims(A)Q1Q2/(sD1D2) as a function of Y for photons
with strongly ordered virtualities (Q2/Q1 = 6 andQ2/Q1 = 96,
with Q1Q2 = 24 GeV

2), in comparison with the case of photons
with equal virtualities (Q21 = Q

2
2 = 24GeV

2). All curves have
been obtained using the “exponentiated” representation with
the collinearly improved kernel

cos(ν log(Q22/Q
2
1)) in the integration over ν. We stress

again that, if the RG-generated terms are removed, it is
impossible even to draw the curves in Fig. 4 with Q2 
=Q1.

4 Conclusions

We have applied a RG-improved kernel to determine the
amplitude for the forward transition from two virtual pho-
tons to two light vector mesons in the Regge limit of QCD
with next-to-leading order accuracy. The result obtained is
independent on the energy scale s0, and on the renormal-
ization scale µR within the next-to-leading approximation.
Using two different representations of the amplitude,

which include the dependence on the energy scale and on
the renormalization scale at subleading level, we have per-
formed a numerical analysis both in the kinematics of equal
and strongly ordered photons’ virtualities.
An optimization procedure, based on the principle of

minimal sensitivity, has led to results stable in the consid-
ered energy interval, which allow one to predict the energy
behavior of the forward amplitude. The important finding
is that the optimal choices of s0 and µR are much closer
to the kinematical scales of the problem than in previous
determinations based on unimproved kernels. This effect
is very marked for µR, as must be expected, since the ex-
tra terms depend on µR and not on s0. This leads us to
conclude that the extra terms in the BFKL kernel com-
ing from collinear improvement, which are subleading to
the NLA, catch an important fraction of the dynamics at
higher orders.
Moreover, the use of the improved kernel has allowed

us to obtain the energy behavior of the forward amplitude
in the case of strongly ordered photons’ virtualities, which
turned out to be unaccessible to previous attempts using
unimproved kernels.

Acknowledgements. We thank D.Y. Ivanov for reading the
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